DISSOCIATIVE RECOMBINATION OF
MOLECULAR IONS

Dissociative recombination (DR) of molecular ions with electrons is a complex, poorly understood molecular process. Its critical role as a neutralizing agent in the Earth’s upper atmosphere is now well established and its occurrence in many natural and laboratory produced plasmas has been a strong motivation for studying the event. For the first time, theoretical concepts, experimental methodology, and applications are united in one book, revealing the governing principles behind the gas-phase reaction. The book takes the reader through the intellectual challenges posed, describing in detail dissociation mechanisms, dynamics, diatomic and polyatomic ions, and related processes, including dissociative excitation, ionpair formation and photodissociation. With the final chapter dedicated to applications in astrophysics, atmospheric science, plasma physics, and fusion research, this is a focused, definitive guide to a fundamental molecular process. The book will appeal to academics within physics, physical chemistry, and related sciences.

MATS LARSSON is a Professor and Experimentalist in the Physics Department at Stockholm University. He obtained his Ph.D. in physics in the Research Institute of Physics and Stockholm University. His research interests include primary chemical reactions, interstellar chemistry, and molecular spectroscopy. He was a member of the Physics and Mathematics Committee of the Swedish Natural Science Research Council from 1989 to 1995. He was made chair of the Research Committee of the Swedish National Space Board in 2001, and was also chair of the Evaluation Committee for Atomic and Molecular Physics, Fusion Research and Plasma Physics of the Swedish Research Council from 2001 to 2003.

ANN E. OREL is a Professor and Chair in the Department of Applied Sciences at the University of California, Davis. She obtained her Ph.D. in chemistry at the University of California, Berkeley and was made a fellow of the American Physical Society in 2000. Her research interests include theoretical atomic and molecular physics and computational science.
DISSOCIATIVE RECOMBINATION OF
MOLECULAR IONS

MATS LARSSON
Stockholm University

and

ANN E. OREL
University of California, Davis
We would like to dedicate this book to Sheldon Datz, who was responsible for introducing us to this interesting area of physics.
Contents

Preface ix

Introduction 1

1.1 History 1900–1950 1
1.2 History 1950–1970 5
1.3 History 1970–1990 7
1.4 History 1990–present 10

2 Experimental methods 11

2.1 Merged beams 11
2.2 Ion storage rings 30
2.3 Stationary afterglow technique 51
2.4 Flowing afterglow technique 59
2.5 Shock-tube technique 68

3 Theoretical methods 70

3.1 Introduction 70
3.2 What is a resonance? 75
3.3 Formal resonance theory 78
3.4 Resonance parameters and structure 83
3.5 Nonadiabatic couplings 89
3.6 Calculation of dynamics 93

4 The H$_2^+$ molecule 104

5 Diatomic hydride ions 119

5.1 HeH$^+$ 119
5.2 NeH$^+$, ArH$^+$, KrH$^+$, and XeH$^+$ 132
5.3 CH$^+$ 133
5.4 NH$^+$ and OH$^+$ 139
5.5 LiH$^+$ 140
Contents

6 Diatomic ions 143
 6.1 Rare-gas dimer ions: He$_2^+$, Ne$_2^+$, Ar$_2^+$, Kr$_2^+$, Xe$_2^+$ 143
 6.2 The atmospheric ions: O$_2^+$, N$_2^+$, and NO$^+$ 154
 6.3 Other diatomic ions 180

7 The H$_3^+$ molecule 184
 7.1 History of H$_3^+$ 184
 7.2 The dissociative recombination of H$_3^+$ 186

8 Polyatomic ions 227
 8.1 Dissociation dynamics in recombination of XH$_2^+$ ions
 (X = C, N, O, S, P) 227
 8.2 Astrophysical molecular ions 244
 8.3 Cluster ions 267
 8.4 Hydrocarbon ions 277
 8.5 Other polyatomic ions 283
 8.6 Electron capture dissociation 283

9 Related processes 287
 9.1 Dissociative excitation and ionization of molecular ions 288
 9.2 Ion-pair production 294
 9.3 Electron impact detachment of negative ions 296
 9.4 Electron–molecule scattering; dissociative attachment 300
 9.5 Photodissociation and photoionization 308

10 Applications 315
 10.1 Molecular astrophysics 315
 10.2 Atmospheric physics and chemistry 319
 10.3 Plasma physics and fusion research 320

References 321

Index 377
Preface

This research monograph provides a single-volume description of the dissociative recombination of molecular ions with electrons. Since this is one of the most complex gas-phase processes, its study is a challenge to theorists and experimentalists alike. The theory, experiment, and applications of dissociative recombination are scattered in the scientific literature as original research articles, conference proceedings, and review articles. This book brings this information together in a single work for the first time.

The book is intended for researchers and Ph.D. students in the fields of atomic and molecular physics, chemical physics and physical chemistry, molecular astrophysics, atmospheric physics, and other areas of science where electrons and molecular ions are important.

This book was written during a period when each of us had several other commitments which slowed down the writing. One of us (AEO) was department chair at UC Davis essentially during the entire writing process, and ML chaired committees for the Swedish Space Board and the Swedish Research Council.

We are grateful for the hospitality of the Institute for Atomic and Molecular Physics (ITAMP) at the Harvard-Smithsonian Center for Astrophysics and Harvard University Physics Department (Kate Kirby, Hussein Sadeghpour), the Cluster Research Laboratory, Toyota Technological Institute, Tokyo (Tamotsu Kondow), and the University of Chicago (Takeshi Oka), all of which provided excellent working conditions for us when we needed to get away from our home institutions to focus on writing.

Several people have assisted us in reading part of the book and making valuable suggestions: Alex Dalgarno, Shirzad Kalhori, Holger Kreckel, Åsa Larson, Valery Ngassam, Takeshi Oka, Jeanna Royal, Albert Viggiano and Vitali Zhaunerchyk. We offer them our sincerest thanks for their help.

Finally we would like to thank Rainer Johnson, Brian Mitchell, Ioan Schneider, Andreas Wolf, Chris Greene, and the members of our research groups for access to material prior to publication.
Dissociative recombination studies of other molecular ions in the interstellar medium and in cometary and planetary atmospheres are covered. Ionization is an important competitive process to dissociative recombination and its competition with predissociation and its role in the reverse process of the association of neutral species is presented. Dissociative attachment, in which an electron attaches to a neutral molecule, has many similarities to dissociative recombination. The topics covered include the accurate calculation of electron affinities, attachment to molecules, clusters, and to specific research on the dissociative recombination of electrons e- and molecular ions XY+ in an external electromagnetic field is important to the theory of radiative collisions and also in connection with the development of laser methods for stimulating elementary processes involving atoms and molecules. There is particular interest in the case of monochromatic IR light under limitations on the frequency ωf and amplitude f of the external field such that this field affects the e- +XYt system only in the stage in which intermediate Rydberg complexes XY** form (such complexes are known to play an important role in Cambridge University Press, 2008, 380 pages. Dissociative recombination (DR) of molecular ions with electrons is a complex, poorly understood molecular process. Its critical role as a neutralising agent in the Earth's upper atmosphere is now well established and its occurrence in many natural and laboratory produced plasma has been a strong motivation for studying the event. For the first time, theoretical concepts, experimental methodology and applications are united in one book, revealing the governing principles behind the gas-phase reaction.