AN EMPIRICAL TESTING OF CAPITAL ASSET PRICING MODEL IN BANGLADESH

Md. Mostafizur Rahman
School of Business, South East University, Dhaka, Bangladesh
Md. Azizul Baten
Department of Statistics, Shah Jalal University of Science and Technology, Sylhet-3114, Bangladesh

Abstract
Capital Asset Pricing Model (CAPM) provides an equilibrium linear relationship between expected return and risk of an asset. The purpose of this paper is to investigate a risk-return relationship within the CAPM framework. The study also aims at exploring whether CAPM is a good indicator of asset pricing in Bangladesh. For this study, a period 1999-2003 have been considered. Fama-French [1992] methodology on five variables-stock market return, beta, book to market value, size (Market capitalization) and size 1 (sales) were used to test this model. In the present findings on the CAPM it has been shown that the variables studied have significant relationship with stock return, are still too alive on this ground.

Keywords: Capital asset pricing model, empirical test, equilibrium linear relationship, return, size.

INTRODUCTION
Under certainty the saving can be invested in one kind asset for certain but in case of uncertainty, which appears to be unavoidable in the real world, anyone must have to undertake the liability of risk due to uncertain future earnings on assets or securities. The potential investors, individual or corporation are faced with a capital market of considerable sophistication offering a wide range of investment opportunities.
The Asset Pricing models (CAPM) describe an equilibrium relationship between expected return and risk in the securities market under the assumption that uncertain future returns of securities can be described in terms of moments of their probability distributions. The most common version is the mean-variance CAPM in which two moments are assumed to be relevant. The relationship between expected return and risk is the central theme of the asset pricing theory. It is with the problems surrounding choice under uncertainty that Markowitz [1952] and Tobin [1958] first concerned themselves. The origin of the asset pricing theory lies with Markowitz [1952] who was a pioneer in demonstrating formally that diversification of security holdings reduces the risk, unless the
returns to the securities are perfectly correlated. He theorized that investors
could diversify away all sorts of risks except the risk that comes with holding
stocks in general. The CAPM model usually attributed to 1990 Nobel Laureate
William Sharpe [1964], was also developed by Linter [1965], Mossin [1966] and
Fisher [1972]. In general CAPM provides an equilibrium linear relationship
between expected return and risk associated with an asset. The average return
anomalies of the CAPM suggest that, if asset pricing is rational, a multifactor
version of Merton’s [1973] international CAPM or Ross [1976] arbitrage pricing
theory (APT) can provide a better description of average returns. Fama and
Macbeth [1973] was the first reported study in America of the linear relation as
predicted by the CAPM. They reported statistics for the slope coefficients as
being between 0.7 and 1.73 for the years 1946-55 and 1956-68 respectively. Ball
et al. [1976] reported evidence of a robust positive linear relationship between
risk and returns in Australia. Ariff and Johnson [1990] found a strong linear
relationship in the Singapore share market, thus suggestions that portfolio risk
and returns are positive and linear. Their reported coefficient of variation was
high as 70% especially over long period tests of 18 years, but both the slope
coefficient and the coefficient of variation in tests done in short periods were
insignificant. Fama and French [1989] identified two useful variables for
forecasting expected asset returns: the default and term spread, which depend
upon the monetary environment founded by Jensen [1996]. He [1993] shows that
the CAPM model is a good description of returns on portfolio formed on size and
book to market equity. Fama and French [1992] reported that the relationship
between beta and average returns disappeared during the 1963-1990 period.
They found that there is a simple positive relationship between average return
and beta during the pre-1969 period; no significant relationship was found for
1963-1990 period. Fama and French [1994] use the model also to explain
industry returns.

The capital asset pricing model in its various forms has been extensively tested
for the developed capital markets such as those of U.S.A., Europe and Australia
and to a lesser extent for the developing capital markets. It is needless to say
that there have been very little tests of this model in the Bangladesh environment
despite the existence of an organized capital market for a long period. Moreover,
the applicability of the western theories to Bangladesh capital markets is suspect
owing to several differences between the developed capital markets and the
developing ones. There are economic and institutional differences, size related
variations, liquidity conditions, disclosure requirements, integration of the
financial system etc. Thus, the motivation for the study is to generate
comparative test results with in the CAPM framework for a developing capital
market such as Bangladesh.

This study aims at testing the applicability of the model to describe risk-return
relationship on the Bangladesh capital market. This paper explores whether the
CAPM is a suitable description of asset pricing in Bangladesh context. The paper
has been organized as follows: Next section describes the data and the variables
used in the study for analyzing the applicability of Fama-French’s CAPM in DSE.
Then a justification of choosing the suitable analysis technique to identify the
determinants of CAPM in an emerging market is discussed. Proceeding section
discusses the specification of CAPM with assumptions. Then empirical findings
with discussion have been presented. Finally, in the last section are given
concluding remarks.
DATA DESCRIPTION
This survey is conducted to investigate the Fama-French’s CAPM in developing countries especially in Bangladesh based on the sources of information from Dhaka Stock Exchange (DSE) emphasizing only on non-financial sector. The data range is from 1999 to 2003. Non-financial sectors have been incorporated for analyzing the applicability of Fama-French’s CAPM in DSE and to judge the multifactor variable effect on DSE.

SAMPLE SIZE
The final sample consists of 123 Dhaka Stock Exchange listed non-financial companies.

SAMPLE PERIOD
Five years period (1999-2003) is considered for this study. There were 93 companies listed in the DSE in 1988 but that increased to 105 in 1989, to 116 in 1990, and to 209 in 1997 and to 248 in 2003. So, it is observable that the listed companies of the DSE are increasing every year because of new listed companies. This study considered all the DSE listed non-financial companies for the 5 years period 1993-1997 as the sample, i.e., it conducts panel study, however, as the sample size is not same for every year but rather the sample size increases every year. This study conducts five yearly average cross-section models and polled models (time-series and cross-section together). So, there is no problem to conduct pooled regression analysis would be ((Sample size * Number of years) Missing cases) because of the unbalanced panel data.

EMPIRICAL PART: TESTING FAMA-FRENCH’S CAPITAL ASSET PRICING MODEL ON THE DSE DATA
The Dhaka Stock Exchange listed all non-financial sector companies over period of 1999-2003 are primarily considered the sample of this empirical phase. However, as we have already been mentioned earlier, a few number of companies are excluded from the sample because either all of the company or market data of those companies are unavailable. So, the sample size became smaller than the actual companies listed in the DSE. Therefore, the final sample consists of 123 DSE listed non-financial sector companies for this research. All the company data are collected from the annual reports of the listed non-financial sector companies of the period of 1999-2003. The market data (1999-2003) are collected from the DSE price database. However, the macro-economic data are collected the published reports of National Board of Revenue of Bangladesh.

<table>
<thead>
<tr>
<th>Name of the Variables</th>
<th>Proxies</th>
<th>Calculations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stock Market Return</td>
<td>Natural Log of Stock Return</td>
<td>$LN\left(\frac{I_i - I_{i-1}}{I_{i-1}}\right)$</td>
</tr>
<tr>
<td>Book to Market Size</td>
<td>Book value/Market value</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Market capitalization and Sales</td>
<td>LN (Market capitalization and Sales)</td>
</tr>
</tbody>
</table>
JUSTIFICATION OF CHOOSING THE ANALYSIS TECHNIQUE IN EMPIRICAL PHASE

This phase considered multiple regression analysis approach to identify the determinants of Capital Asset Pricing Model in an emerging market. This method best suits this study because we took the CAPM theories, which comprises of beta of the stock and we take this on the day. The day before and the next day are considering for computing marketing beta. Not only that we also consider book to market value and size both in the market capitalization and sales aspect. As this study considers the CAPM theories to identify the determinants of stock return, this is completely new in this area, which adds new value to the research and also attempts to minimize the gap between theoretical studies and empirical studies. However, this study brings the dividend theories into the empirical investigation, which will obviously help to minimize the gap between theoretical and empirical study.

As previous researchers suggest that averaging works very well with the unbalanced panel data, that motivates to conduct five yearly average cross-sections and pooled multiple regression analysis for this study. However, multiple regression analysis is more suitable to deal with the research problem and data set for the current research.

To have a better understanding about the CAPM and after an intensive review of the previous empirical studies on the CAPM, we found interesting to conduct a study on the Fama-French’s CAPM. However, as we know that a number of studies conducted on the CAPM but a very few are in the developing markets and virtually no study on the DSE, therefore, this is indeed right attempt to conduct such a study on the DSE data.

MODEL SPECIFICATIONS AND TESTABLE HYPOTHESES

Fama and French introduced three factors CAPM model. Their model assumes that the expected return of a portfolio in excess of the risk-free rate \(E(R_m) - R_f \) explained by the sensitivity of its return to three factors:

(i) The excess return on a broad market portfolio \((R_m - R_f) \).

(ii) The difference between the return on a portfolio of small stocks and the return on a portfolio of large stocks (SMB, small minus big), and

(iii) The difference between the return on a portfolio of high-book-to market stocks and the return on a portfolio of low-book to market stocks (HML, high minus low). Specifically, the expected excess return on portfolio i is

\[
R_i - R_f = \alpha + b_i \left[E(R_m) - R_f \right] + s_i (SMB) + h_i (HML) + \epsilon_i
\]

Where \(E(R_m) - R_f \), \(E(SMB) \) and \(E(HML) \) are expected premiums, and the factor sensitivities or loadings, \(b_i \), \(s_i \), \(h_i \) are slopes in the time series regression.

One thing that’s interesting is that Fama-French still sees high returns as a reward for taking on high risk; in particular that means if returns increase with book/price, then stocks with a high book/price ratio must be more risky than average-exactly the opposite of what a traditional business analysis would tell that the difference comes from whether one believe in the efficient market theory.
The business analyst doesn’t believe it, so they would say high book/price indicates a buying opportunity; the stock looks cheap. But if it does believe in EMT then it is to believe cheap stocks can only be cheap for a good reason, namely that investors think they’re risky! So, one is interested to see whether Fama-French’s variables are valid for the Bangladesh market or not. The proposed Fama-French’s model considers Scholes and William’s [1977] beta factor, book or market value and size (market capitalization and sales) for the Bangladeshi market.

The proposed model is:

\[R_i - R_f = \alpha + b_1 (R_m) - R_f + s_i (Size) + h_i (BM) + \epsilon_i \]

Where it is same as before the factor sensitivities or loadings, \(b_i, s_i, h_i \) are the slopes in the time series regression. In this regard the natural log of daily return is taken with the consideration of lag and lead. In case of beta, the daily beta of the stock is chosen. In this regard the form is like this:

\[R_i = \alpha + \beta_1 R_{m(t-1)} + \beta_2 R_m + \beta_3 R_{m(t+1)} \]

Where \(\alpha \) is intercept and \(\beta_i \) is the coefficients of the day before (t-1) the stock return and \(\beta_2(t) \) is the coefficients of the current day the stock return and \(\beta_3 \) is the coefficients of the day after (t+1) the stock return. Through regression we get the \(\beta \) of the stock. Again daily market value is taken and in terms of size the natural log of both the market capitalization and sales is taken. In regard both the cross sectional and regression analysis are taken to the data set 1993-1997.

In equilibrium, the CAPM specifies expected returns as a linear function of risk in the form

\[E(R_i) = R_f + [E(R_m) - R_f] \beta_i \] \hspace{1cm} (1)

Where

- \(i \): indicates any asset that is expected to produce a cash flow,
- \(m \): indicates the market for a set of similar assets traded in an asset market,
- \(f \): the yield on a default-free asset with identical interval of time as the asset, and
- \(R \): represents the returns over intervals of time.

Equation (1) is in terms of expected returns. But implications must be tested with data on period-by-period security or portfolio returns. Given the stochastic generalization of (1) the present study attempts to test the following hypothesis:

(a) A positive relation between expected return \(E(R) \) and the systematic risk \(\beta_i \) is hypothesized, i.e., the slope of the CAPM equation (1) is positive.

(b) The slope is equal to the difference between the expected return on the portfolio and the risk-free rate.

(c) The expected return on any \(\beta = 0 \) asset is the risk-free return \(R_f \) i.e. the intercept of CAPM equation (1) is \(R_f \).

(d) The relationship between expected return and risk \((\beta_i) \) is linear.
(e) Only β_i is important in differentiating among security returns, i.e., there are no terms other than the risk-free-rate and the premium for β_i that determine expected returns. In other words, the market will not price the residual risk of any stock.

EMPIRICAL FINDINGS

Through 5 yearly average cross sectional analysis and polled multiple regression analysis has been done for this study. There are two types of Ordinary Least Square (OLS) regression run to applicability of three factor Fama- French [1993] model and the justification of CAPM in DSE as a representative of emerging markets in developing countries: one, five yearly (1999-2003) average cross section regression model, and two, polled regression model. 4 years (5-1) dummies are considered for 5 years (1999-2003). In average cross sectional analysis the proxy variables sales and market capitalization were interchanged. In polled regression it is taken the impulse dummy 1999 year as 1 (one) and other 2003-year as (0) zero. In all aspect the years are significant which indicates the impact of time on the model as well as the size (both the market capitalization and sales). As time have the impact on the model, so incorporation of year dummy has rather improve the overall significance of the regression model.

From the cross section and regression analysis one gets the different focii. In first case (Table 1) the stock return is taken as dependent variable and the independent variables are size (market capitalization) market beta and book to market value. The CAPM relates the sensitivity of an individual company's stock returns to the returns of the market as a whole. Estimating a model for a particular firm requires data on the market rate of return, the risk-free rate of return (usually a short-term treasury bill), and stock returns from the non-financial institutions. The data for this example consist of daily observations from January 1999 through December 2003 on the market return, the risk-free rate. Risk premium is the excess return of a security over the risk-free rate or, rather, the extra return that investors require for bearing risk. The R^2 value of 0.02039 means that about 2% of the variation in the stock returns can be explained by the independent variables of the market. The correlation among the dependent and independent variables is 0.14278, which shows the interdependency among the variables.

<table>
<thead>
<tr>
<th>Variable</th>
<th>B</th>
<th>SE (Standard Error Beta)</th>
<th>Beta</th>
<th>T</th>
<th>Sig T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beta</td>
<td>-0.000858800</td>
<td>0.00029724</td>
<td>-0.142996</td>
<td>-2.887</td>
<td>0.00410</td>
</tr>
<tr>
<td>BM</td>
<td>-0.000006650</td>
<td>0.00013026</td>
<td>-0.025730</td>
<td>-0.511</td>
<td>0.60970</td>
</tr>
<tr>
<td>SIZE</td>
<td>0.00001159</td>
<td>0.00008288</td>
<td>0.071537</td>
<td>1.399</td>
<td>0.16260</td>
</tr>
<tr>
<td>(Constant)</td>
<td>0.00049870</td>
<td>0.00046666</td>
<td>0</td>
<td>1.069</td>
<td>0.28580</td>
</tr>
</tbody>
</table>

Table 1: Five Yearly Average Cross Sectional Analysis: (Size, Beta, BM) Variables in the equation (General value).

<table>
<thead>
<tr>
<th>Variable</th>
<th>B</th>
<th>SE (Standard Error Beta)</th>
<th>Beta</th>
<th>T</th>
<th>Sig T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beta</td>
<td>0.14278000</td>
<td>R^2 0.020390</td>
<td></td>
<td></td>
<td>0.01368</td>
</tr>
<tr>
<td>F-statistic</td>
<td>3.03836000</td>
<td>Signif F 0.028900</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The $F_{score} = 3.03836$ for cross sectional analysis and significant at 2% level and the beta is significant at 1% level other variables BM and Size (market capitalization) are not significant to explain the dependent variable. So it can be said that beta have the relationship with the stock return.

In Table 2, again when stock return is taken as dependent variable and the independent variables are Size (sales) market beta and stock to market value. The value of 0.03396 means that about 3% of the variation in the stock returns can be explained by the independent variables of the market.

<table>
<thead>
<tr>
<th>Variable</th>
<th>B</th>
<th>SE (Standard Error Beta)</th>
<th>Beta</th>
<th>T</th>
<th>Sig T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beta</td>
<td>-0.00088210</td>
<td>0.00029161</td>
<td>-0.152316</td>
<td>-3.025</td>
<td>0.00260</td>
</tr>
<tr>
<td>BM</td>
<td>-0.0007058</td>
<td>0.0012269</td>
<td>-0.028433</td>
<td>-0.575</td>
<td>0.56540</td>
</tr>
<tr>
<td>SIZE 1</td>
<td>0.00074918</td>
<td>0.00025915</td>
<td>0.143261</td>
<td>2.891</td>
<td>0.00400</td>
</tr>
<tr>
<td>(Constant)</td>
<td>-0.00048290</td>
<td>0.00062148</td>
<td>0</td>
<td>1.043</td>
<td>0.29750</td>
</tr>
</tbody>
</table>

Table 2: Five Yearly Average Cross Sectional Analysis: (Size 1, Beta, BM) Variables in the equation (General value).

The $F_{score} = 4.87446$ for cross sectional analysis and the beta and Size 1 (sales) is significant at 1% level and variables BM is not significant to explain the dependent variable. So it can be said that beta and Size 1 (sales) have the relationship with the stock return.

In Table 3, year 1999 was taken as impulse dummy. The multiple $R = 0.68383$ and R square is 0.46763. Here one observes highly impact of year over the independent variables. The R^2 value of 0.46763 means that about 47% of the variation in the stock returns can be explained by the independent variables of the market. Here the impact of year is noted.

<table>
<thead>
<tr>
<th>Variable</th>
<th>B</th>
<th>SE (Standard Error Beta)</th>
<th>Beta</th>
<th>T</th>
<th>Sig T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beta</td>
<td>0.00088210</td>
<td>0.00029161</td>
<td>-0.152316</td>
<td>-3.025</td>
<td>0.00260</td>
</tr>
<tr>
<td>BM</td>
<td>0.0007058</td>
<td>0.0012269</td>
<td>-0.028433</td>
<td>-0.575</td>
<td>0.56540</td>
</tr>
<tr>
<td>SIZE 1</td>
<td>0.00074918</td>
<td>0.00025915</td>
<td>0.143261</td>
<td>2.891</td>
<td>0.00400</td>
</tr>
<tr>
<td>(Constant)</td>
<td>-0.00048290</td>
<td>0.00062148</td>
<td>0</td>
<td>1.043</td>
<td>0.29750</td>
</tr>
</tbody>
</table>

Table 3: Pooled Regression Analysis: (Size, 1999 impulse dummy) Variables in the equation (General value).
The overall $F_{score} \approx 3.038$ and 58.0273 for cross-sectional and pooled regression models respectively with the consideration of Size (market capitalization) and year 2000, 2002, 2003 are significant at 1% level but the other variables BM and the year 2001 are not significant.

For Table 4, year 2003 was taken as impulse dummy. The multiple R is 0.68383 and R^2 square is 0.46763. Here one again observes highly impact of year over the independent variables. The R^2 value of 0.46763 means that about 47% of the variation in the stock returns can be explained by the independent variables of the market.

Table 4: Pooled Regression Analysis: (Size, 1997 impulse dummy) Variables in the equation (General value).

<table>
<thead>
<tr>
<th>Variable</th>
<th>B</th>
<th>SE (Standard Error Beta) B</th>
<th>Beta</th>
<th>T</th>
<th>Sig T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beta</td>
<td>-0.000160000</td>
<td>0.000236970</td>
<td>-0.026964</td>
<td>-0.683</td>
<td>0.4951</td>
</tr>
<tr>
<td>BM</td>
<td>5.07338 x 10^-6</td>
<td>0.000101040</td>
<td>0.001962</td>
<td>0.50</td>
<td>0.9600</td>
</tr>
<tr>
<td>SIZE</td>
<td>0.000119022</td>
<td>0.000062629</td>
<td>0.073450</td>
<td>1.900</td>
<td>0.0580</td>
</tr>
<tr>
<td>DUM 93</td>
<td>0.003234000</td>
<td>0.000443100</td>
<td>0.330486</td>
<td>7.299</td>
<td>0.0000</td>
</tr>
<tr>
<td>DUM 94</td>
<td>0.005666000</td>
<td>0.000387100</td>
<td>0.620952</td>
<td>14.638</td>
<td>0.0000</td>
</tr>
<tr>
<td>DUM 95</td>
<td>0.030500000</td>
<td>0.000364100</td>
<td>0.357245</td>
<td>8.390</td>
<td>0.0000</td>
</tr>
<tr>
<td>DUM 96</td>
<td>0.066130000</td>
<td>0.000356400</td>
<td>0.753013</td>
<td>17.152</td>
<td>0.0000</td>
</tr>
<tr>
<td>(Constant)</td>
<td>-0.003500000</td>
<td>0.000428360</td>
<td>-</td>
<td>-0.179</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

Multiple R 0.68384 R^2 0.46763 Adjusted R Square 0.45905

The overall $F_{score} \approx 54.46134$ for pooled regression analysis and the Size (market capitalization) is significant at 5% level and the variable beta and BM is not significant to explain the dependent variable. So it can be said that Size (market capitalization) have the relationship with the stock return. In pooled regression models respectively with the consideration of Size as Market capitalization and taken year 2003 as impulse dummy. Here one finds that Size (market capitalization) and year 1999, 2000, 2001, 2002 are significant at 1% level but the other variables BM and the year 1995 are not significant.

Table 5: Pooled Regression Analysis: (Size 1, 2003 impulse dummy) Variables in the equation (General value).

<table>
<thead>
<tr>
<th>Variable</th>
<th>B</th>
<th>SE (Standard Error Beta) B</th>
<th>Beta</th>
<th>T</th>
<th>Sig T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beta</td>
<td>-0.00014</td>
<td>0.00023036</td>
<td>-0.024634</td>
<td>-0.619</td>
<td>0.536</td>
</tr>
<tr>
<td>BM</td>
<td>5.61E-06</td>
<td>0.00094626</td>
<td>0.002259</td>
<td>0.059</td>
<td>0.9528</td>
</tr>
<tr>
<td>SIZE 1</td>
<td>0.00061</td>
<td>0.0018867</td>
<td>0.116724</td>
<td>3.235</td>
<td>0.0013</td>
</tr>
<tr>
<td>DUM 93</td>
<td>0.002983</td>
<td>0.00043249</td>
<td>0.313761</td>
<td>6.897</td>
<td>0.0000</td>
</tr>
<tr>
<td>DUM 94</td>
<td>0.005497</td>
<td>0.00037319</td>
<td>0.620938</td>
<td>14.729</td>
<td>0.0000</td>
</tr>
<tr>
<td>DUM 95</td>
<td>0.002862</td>
<td>0.00035967</td>
<td>0.340956</td>
<td>8.092</td>
<td>0.0000</td>
</tr>
<tr>
<td>DUM 96</td>
<td>0.006149</td>
<td>0.00035124</td>
<td>0.762851</td>
<td>17.508</td>
<td>0.0000</td>
</tr>
<tr>
<td>(Constant)</td>
<td>-0.0425</td>
<td>0.00049851</td>
<td>0</td>
<td>-8.515</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

Multiple R 0.70459 R^2 0.49645 Adjusted R Square 0.48789

F-statistic 58.0273 Signif F 0.0000
Year 2003 was taken as impulse dummy in Table 5. The multiple R is 0.70459 and R^2 is 0.49645. Here one again notices highly impact of year over the independent variables. The R^2 value of 0.49645 means that about 50% of the variation in the stock returns can be explained by the independent variables of the market. Here one again finds the impact of year.

The overall $F_{\text{score}} = 58.0273$ for pooled regression analysis and the \textit{Size} 1 (Sales) is significant at 5% level and the variable beta and BM is not significant to explain the dependent variable. So it can be said that \textit{Size} 1 (Sales) have the relationship with the stock return. In pooled regression models respectively with the consideration of \textit{Size} 1 as Sales and taken year 2003 as impulse dummy. Here it is found that \textit{Size} 1 (Sales) and year 1999, 2000, 2001, 2002 are significant at 1% level but the other variables BM and beta are not significant.

CONCLUDING REMARKS

Fama and French’s three-factor model of CAPM defines the significance of other variables in the market. And to walk in that way, the CAPM model is designed with the consideration of beta, book to market value and \textit{Size} (Market capitalization and Sales).

The results of the empirical investigation strongly support the relationship among the variables to determine the stock return also evidenced that beta is not only the factor to determine the stock return but the other variables as taken also significantly important. In this research paper the impact of time is observed and as it is seen that time variability causes the stock return to vary and all variables become significant with the time factor. So the variables beta, book to market value and \textit{Size} but the time impact also has significant importance. In present findings on the CAPM it has shown that the variables studied have significant relationship with stock return, are still too alive on this ground. Here it is also found that the impact of time and the year impact create importance in Bangladesh market, which is the newly issue for CAPM model.

References

Dimsons, E. (1979) "Risk measurement when shares are subjected to infrequent trading", \textit{J. Finan. Eco.}, 7(2), 187-226.

Empirical tests in this study suggest that the relationships between β and return in the ISM over the period January 1990–June 2001 is weak, and the Capital Asset Pricing Model (CAPM) has poor overall explanatory power. The Arbitrage Pricing Theory (APT), which allows multiple sources of systematic risks to be taken into account, performs better than the CAPM, in all the tests considered. However, it was only with the Capital Asset Pricing Model (CAPM) developed by Sharpe (1964) that one of the important problems of modern financial economics was formalized: the quantification of the trade-off between risk and expected return. Proponents of the CAPM argue that β, a measure of systematic risk relative to the market portfolio, is the sole determinant of return. Of particular interest is to test how the changes in monetary aggregates directly affect the stock prices through asset changes and indirectly through their effects on real economic activity. We have considered the monthly series of the real stock returns (P) and examine the relationship between stock returns and monetary aggregates from 1980 to 2008. We also include the exchange rate of US dollar against Bangladeshi Taka and industrial production index. Joarder, M.A.M., Ahmed, M.U., Haque, T. et al. An empirical testing of informational efficiency in Bangladesh capital market. Econ Change Restruct 47, 63–87 (2014). https://doi.org/10.1007/s10644-013-9142-y. Download citation.