Table of Contents

Global Positioning System:
Signals, Measurements and Performance
Second Edition
By Pratap Misra and Per Enge

Part #2500-2

Introduction
A Brief History of Navigation
Methods of Radionavigation
Radionavigation Systems

GPS in 2005: An Overview
Objectives, Policies, and Status
System Architecture
Signals
Receivers, Measurements, and Performance
Differential GPS (DGPS)
Civil Applications

Future Global Navigation Satellite Systems
Spreading Codes and Ranging Signals: An Overview
GPS Modernization
GLONASS and Galileo
Interoperability of GPS, GLONASS, and Galileo
GPS+GLONASS+Galileo Performance

GPS Coordinate Frames, Time Reference, and Orbits
Global Coordinate Systems
Time References and GPS Time
Satellite Orbits and Satellite Position Determination
GPS Satellite Constellation and Visibility Displays

GPS Measurements and Error Sources
Measurement Models
Control Segment Errors: Satellite Clock and Ephemeris
Signal Propagation Modeling Errors
Measurement Error: Empirical Data
Combining Code and Carrier Measurements
Error Mitigation: Differential GPS (DGPS)

Continued
PVT Estimation
Position Estimation with Pseudoranges
Position and Velocity from Pseudorange Rates
Time Transfer

Precise Positioning with Carrier Phase
Carrier Phase and Integer Ambiguity Resolution: A Simple Model
Carrier Phase Measurements and Precise Positioning
Resolving Ambiguities One at a Time
Resolving Ambiguities as a Set: Search Techniques
Three-Frequency Measurements

Signals and Linear Systems
Convolution
Transfer Functions and Basis Functions
Fourier Series
Fourier Transforms
Random Signals
Laplace Transforms

GPS Signals
Civil Signal on L1
Auto-correlation
Cross-correlation and Channel Sharing
Maximal Length Linear Shift Register Sequences
Gold Codes of Length 31 and 1023
Power Spectral Density
Narrowband Radio Frequency Inteference
P(Y) Codes on L1 and L2
New Civil Signals for GPS
Binary Offset Carrier Signals

Signal-to-Noise Ratio and Ranging Precision
Signal Path Loss and Transmit Antenna Gain
Received Signal Power and Receiver Antenna Gain
Noise Analysis of a GPS Receiver
Delay Lock Loops and Ranging Precision
Ranging Precision in the Presence of White Noise
Ranging Precision in the Presence of Signal Reflections

Continued
Signal Conditioning and Acquisition
Introduction
Signal Conditioning
Signal Acquisition
Statistical Analysis of Signal Acquisition

Signal Tracking
Overview of a Signal Tracker
Delay Lock Loops
Phase Lock Loops

Coping With Radio Frequency Interference and Signal Obstructions
Terrestrial Radio Propagation
Antennas
Assisted GPS
Inertial Aiding
Tone Interference and Adaptive A/D Converters

Global Positioning System:
Signals, Measurements and Performance
Second Edition
By Pratap Misra and Per Enge

Part #2500-2
While conventional global positioning system (GPS) receivers have gained popularity for applications in open-sky environments, their performance degrades in challenging conditions, such as urban canyons and indoors. The assisted GPS (A-GPS) concept enhanced receiver capability to operate in weak signal conditions using terrestrial links to communicate helpful information such as satellite orbital parameters, coarse estimates of time and location, and so forth. As the terrestrial-assistance data channel becomes an important link for the receiver, the statistical modeling of information delivery delays should be addressed to simulate more adequate operation scenarios. This paper addresses this aspect by presenting a