Clinical question

A 43-year-old woman sought advice about the treatment of her seasickness. A sea-kayaking enthusiast, she suffers disturbing motion sickness in big seas. The usual remedies have either been ineffective or made her drowsy. A scuba-diving instructor recommended that she try taking phenytoin the night before going kayaking, and she wonders whether there is any evidence to support this recommendation.

Search question

The primary search question was “Is phenytoin effective in the prevention of motion sickness?” The ideal studies to answer this question would be randomised controlled trials comparing phenytoin with placebo or comparing phenytoin with other conventional therapies.

Search

I searched two online databases, MEDLINE and SUMSearch, combining the terms “motion sickness” and “phenytoin” and limiting the search to studies published in English. The MeSH term “motion sickness” covers a range of conditions, including sea-sickness and travel-sickness. I also searched the websites for two diving-related organisations: Divers Alert Network and Diving Medicine Online.

Summary of findings

Five original research articles on the use of phenytoin for motion sickness were identified. Diving Medicine Online had a review article on motion sickness that mentioned phenytoin. The first of the five research articles reported a laboratory-based placebo-controlled double-blind crossover study using simulated motion. The seven participants were given phenytoin at anticonvulsant levels. Phenytoin was found to be four times as effective as any other single agent in increasing tolerance to motion stress.

The second study involved 15 seamen and/or divers who worked for the US National Aeronautics and Space Administration in both small-boat trials (lasting one hour) and operational sea travel (lasting two to four days). Phenytoin was given in loading doses in the 24 hours before the trials and then maintained at anticonvulsant levels through regular serum testing and titrated doses. The small-boat phase of the study, a double-blind trial of phenytoin versus placebo, showed a significant reduction in nausea levels ($P=0.0172$). The operational sea-travel phase of the study again showed a convincing advantage of phenytoin over placebo.

The third study, a small double-blind crossover study with nine participants, included sea travel as part of a series of exposures to rotational movement, again using the rapid-loading-dose approach to reach anticonvulsant plasma levels of phenytoin. Results showed that phenytoin effectively reduced motion sickness.

The fourth study focused on the effects of phenytoin on cognition and performance. Participants ($n=23$) were given phenytoin to anticonvulsant levels or placebo. Phenytoin did not cause degradation in function, although at higher serum levels (beyond those required for efficacy) participants did report a number of subjective side effects (e.g., lightheadedness).

The fifth study, with 35 participants, was a double-blind study comparing placebo with the use of a single 200 mg dose of phenytoin taken four hours before participants were spun round inside a rotating drum. While differences in the subjective scoring of symptoms were not significant, behavioural responses (vomiting, and request for early termination of the experiment) were significant ($P<0.05$).

The review article on motion sickness in Diving Medicine Online described phenytoin being used the night before a dive, but did not indicate the evidence for this practice.

Comment

There is evidence that phenytoin is effective in preventing motion sickness. The approach used in most of the studies — that of rapidly loading subjects up to anticonvulsant levels of phenytoin in the preceding 24 hours and monitoring plasma levels — is hardly applicable for practical purposes. The generalisability of these studies is also questionable, as all were small and used healthy adult males. Taking a 200 mg dose of phenytoin four hours before exposure is practical, and the results are promising but not conclusive. Further research is required to determine the lowest effective dose. Short-term use of low doses is unlikely to produce serious problems. However, the fact that phenytoin is known to interact with some commonly used medications should be taken into account if it is to be prescribed for preventing seasickness.

Outcome

The woman elected to try a single 200 mg dose of phenytoin four hours before going kayaking. This was considered the lowest dose that might prove effective, based on the available
evidence. To test for side effects, the woman accepted my advice to try the first tablet on a day when she wouldn’t be engaging in hazardous activity. (I can’t report whether she was satisfied with the result, as I haven’t heard from her since — that’s the trouble with fit, healthy people!)

Edi G Albert
Senior Lecturer, Discipline of General Practice
and Department of Rural Health
University of Tasmania, PO Box 252-33, Hobart, TAS 7001
Edi.Albert@utas.edu.au

References

Pocket-sized guide to COPD

The tremendous burden of chronic obstructive pulmonary disease (COPD) is escalating worldwide, as the population ages. In Australia, it is the third leading cause of burden of disease, affecting around one in 10 people aged over 45 years.

We have recently seen the worldwide release of the Global Initiative for Chronic Obstructive Lung Disease (GOLD) guidelines on COPD management. The revised Australian and New Zealand guidelines for management of COPD and associated COPD handbook (based on GOLD) are due for release shortly. So, do we need yet another guide to COPD management? Well, in this case the answer is, resoundingly, yes!

This book is excellent — and given the previous mismatch between the importance of COPD in clinical practice and the availability of useful evidence-based texts on the subject, I would be pleased to see even more books like this one. It is a concise handbook on COPD that is part of the Mosby Rapid reference series offering doctors “easy access to the best information for effective patient care and management”.

Pocket-sized and very easy to read, the book contains chapters on definition, epidemiology, pathophysiology, treatment, future developments and frequently asked questions. The information provided is evidence-based, up-to-date and includes appropriate references. Pagination is colour-coded in sections for easy reference and there are many useful tables and figures. A comprehensive discussion of how to perform spirometry testing is a notable feature. One of the very useful appendices contains addresses and websites for more detailed information about specific areas of interest.

This book would be a useful rapid reference guide for general practitioners, physicians and hospital medical officers alike.

Christine F McDonald
Respiratory Physician
Austin and Repatriation Medical Centre, Heidelberg, VIC

Disturbing body image

The issue of disordered body image is highly relevant to our narcissistic, image-obsessed culture and this makes a concise volume, with a careful selection of chapters dealing with various aspects of this topic, very timely.

The book offers the reader an examination of body image disturbances associated with various psychiatric diagnoses including eating disorders. There is also a comprehensive coverage of body dysmorphic disorder including cognitive behavioural therapy strategies in its management and psychoneuropharmacology.

The chapter on body image in childhood and adolescence is particularly interesting. Its sociocultural perspective extends to the changing shapes of Luke Skywalker and GI Joe dolls — apparently it is not only their muscles which have enlarged with the passage of time. As it was with Barbie, hyper-reality seems to be at work here, giving rise to conjecture about body image implications for the impressionable young in whom prepubertal anorexia nervosa is not only on the rise but is almost equally distributed between genders.

By way of contrast the chapter on eating disorders takes a biological tack, questioning the primacy of body image disturbance in eating disorders, looking at the neurobiology of its acquisition and the role of its serotonergic mechanisms. Other areas covered include related anthropology, neurology, cosmetic surgery and dermatological aspects, and an exploration of disgust and the self.

This compact and attractively presented publication will be of interest to psychiatrists, mental health workers, cosmetic surgeons, dermatologists and general practitioners who will all find it clinically relevant. It should also appeal to the educated lay person seeking a masterly overview of a fascinating subject area.

Janice D Russell
Director, Eating Disorders Program
Greenwich, NSW

(Received 12 Dec 2002, accepted 18 Mar 2003)
Motion sickness is a common syndrome that occurs upon exposure to certain types of motion. It is thought to be caused by conflict between the vestibular, visual, and other proprioceptive systems. Although nausea is the hallmark symptom, it is often preceded by stomach awareness, malaise, drowsiness, and irritability. Early self-diagnosis should be emphasized, and patients should be counseled about behavioral and pharmacologic strategies to prevent motion sickness before traveling. Non-sedating antihistamines, ondansetron, and ginger root are not effective in the prevention and treatment of motion sickness. Motion sickness is a syndrome that occurs when a patient is exposed to certain types of motion and usually resolves soon after its cessation.