I taught the Phys.323 (Modern Physics) in Fall 2011. This course is usually taught for students who just have finished the Phys.131 and 132 (Introductory Physics) in the SUNY at Binghamton. In Phys.131 and 132, we do not teach the modern physics (we teach the simple case of the special relativity). The number of students enrolled in the Phys.323 was 30. My lecture notes are presented here. In the class, of course, the entire topics have not been covered because of such limited times. Although my lecture notes are far from completeness, it is my hope that this notes may be useful for physics students who want to understand the essence of physics. While preparing these lectures notes, I must confess that I really enjoyed studying physics using the Mathematica.

I used a text book of Modern Physics for Scientists and Engineers, Third edition, Stephen T. Thornton and Andrew Rex (Brooks/Cole Cengage Learning). Selected topics of Chapters (between Chapters 2 and 10) were taught. I also adopted the system of the WebAssign as the homeworks (some of problems chose from the textbooks. The homeworks for each chapter were sloved by students using the internet.

Note that students need knowledge of quantum mechanics for some topics. Even if they have difficulty of understanding them at this moment, it is suggested that they could read again after they study the quantum mechanics in near future.

Contents
1 Special relativity (review from Phys.132)
2 Minkowski space time diagram
3 Doppler effect
4 Relativistic mechanics
5 Relativity of magnetic and electric fields
6 Compton effect
7 Davisson and Germer electron diffraction
8 Rutherford scattering
9 x-ray diffraction
10 Crystal structure and reciprocal lattice
11 Black body problem
12 Radiation
13 Heisenberg's principle of uncertainty
14 de Broglie waves
15 One dimensional barrier problems
16 Bohr model
17 Schrödinger equation
<table>
<thead>
<tr>
<th></th>
<th>Wave packets</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>One dimensional bound states</td>
</tr>
<tr>
<td>20</td>
<td>Simple harmonics</td>
</tr>
<tr>
<td>21</td>
<td>Quantum box</td>
</tr>
<tr>
<td>22</td>
<td>Hydrogen atom</td>
</tr>
<tr>
<td>23</td>
<td>Real hydrogen atom</td>
</tr>
<tr>
<td>24</td>
<td>WKB approximation (I)</td>
</tr>
<tr>
<td>25</td>
<td>WKB for simple harmonics (II)</td>
</tr>
<tr>
<td>26</td>
<td>Zeeman effect</td>
</tr>
<tr>
<td>27</td>
<td>Stern-Gerlach experiment</td>
</tr>
<tr>
<td>28</td>
<td>Periodic table and Hund's law</td>
</tr>
<tr>
<td>29</td>
<td>Boltzmann theory of gas</td>
</tr>
<tr>
<td>30</td>
<td>Bose-Einstein condensation</td>
</tr>
<tr>
<td>31</td>
<td>BEC in alkali atoms</td>
</tr>
<tr>
<td>32</td>
<td>Fermi-Dirac distribution function</td>
</tr>
<tr>
<td>33</td>
<td>White dwarf and neutron star</td>
</tr>
<tr>
<td>34</td>
<td>Superconductivity</td>
</tr>
<tr>
<td>35</td>
<td>Josephson effect</td>
</tr>
<tr>
<td>36</td>
<td>Laser physics</td>
</tr>
<tr>
<td>37</td>
<td>Maser physics</td>
</tr>
<tr>
<td>38</td>
<td>Bloch theorem and energy band</td>
</tr>
<tr>
<td>39</td>
<td>Electrical conductivity in metals</td>
</tr>
<tr>
<td>40</td>
<td>Charge density wave</td>
</tr>
<tr>
<td>41</td>
<td>Ferromagnetism and antiferromagnetanism</td>
</tr>
</tbody>
</table>

REFERENCES

(Modern Physics)

((General physics))

((Physics in general))
6. G. Greenstein and A. Zajonc, The Quantum Challenge: Modern Research on the Foundations of Quantum Mechanics (Jones and Bartlett Publisher (Sudbury, MA, 1997).

((Special relativity))
6. R. Skinner, Relativity for Scientists and Engineers (Dover, New York, 1982).

((Superconductivity))

(Quantum mechanics)

(Solid State Physics)

((Classical mechanics))
3. P. Hamill, Intermediate Dynamics (Jones and Bartlett Publisher Sudbury, Massachusetts, 2010).

((Electricity and magnetism))
7. V.D. Barger and M.G. Olsson, Classical Electricity and Magnetism; A Contemporary Perspective (Allyn Bacon, Inc. Boston, 1987)

((Statistical physics and thermodynamics))
7. E. Fermi, Thermodynamics (Dover, New York, 1956).

((Magnetism))

((Optics))

((Laser))

((Atomic physics))

((Mathematical physics))

((Lecture Notes on Advanced Laboratory))

M. Suzuki
Optical pumping of 87Rb atoms
http://bingweb.binghamton.edu/~suzuki/pdffiles/LN_Optical_pumping.pdf

M. Suzuki
Zeeman effect
http://bingweb.binghamton.edu/~suzuki/pdffiles/LN_ZeemanEffect.pdf

M. Suzuki
Faraday rotation
http://bingweb.binghamton.edu/~suzuki/pdffiles/AC_Faraday_rotation.pdf

M. Suzuki
Spin echo methods of nuclear magnetic resonance (NMR)
http://bingweb.binghamton.edu/~suzuki/pdffiles/LN_NMR.pdf