Bibliography

Books

Papers

D. Rector, Loop structures on the homotopy type of S^3, Springer Lecture Notes 249 (1971), 99-105.

S. Shelah, Can the fundamental group of a space be the rationals?, Proc. A.M.S. 103 (1988), 627-632.

J. Stallings, A finitely presented group whose 3-dimensional integral homology is not finitely generated, Am. J. Math. 85 (1963), 541-543.

Index

abelian space 342, 417
action of π_1 on π_n 342, 345, 421
action of π_1 on the fiber of a covering space 68
action of a group 70, 457
acyclic space 142
Adams 427
adjoint 394, 462
admissible monomial 501
Adém relations 498, 503
Alexander 131, 175
Alexander duality 252
Alexander horned sphere 169
aspherical space 343
attaching cells 6
attaching spaces 13, 457
augmented chain complex 110
Barratt-Kahn-Priddy theorem 374
barycenter 120
barycentric coordinates 103
barycentric subdivision 120
base space 376
basepoint 26, 27
basepoint-preserving homotopy 36, 356, 421
Betti number 130
binomial coefficient 285, 492
Bockstein homomorphism 301, 490
Borel construction 322, 458
Borel theorem 283
Borsuk-Ulam theorem 32, 38, 174
Bott periodicity 383, 396
boundary 106, 250
boundary homomorphism 105, 108, 116
Brouwer 32, 114, 126, 134, 171, 175
Brown representability 448
BSO(n) 440
bundle of groups 329
Burnside problem 78
cap product 237
Cartan formula 490, 491
category 162
Cayley graph, complex 75
Čech cohomology 254
Čech homology 255
cell 5
cell complex 6
cellular approximation theorem 348
cellular chain complex 139
cellular cohomology 201
cellular homology 139, 153
cellular map 348
chain 104, 108
chain complex 106
chain homotopy 113
chain map 111
change of basepoint 27, 342
characteristic map 7, 521
circle 28
classifying space 165
closed manifold 228
closure-finite 523
coboundary 196
coboundary map 189, 195
cochain 189, 195
cocycle 196
coefficients 153, 161, 196, 463
cofiber 462
cofibration 461
cofibration sequence 398, 463
Cohen-Macauley ring 226
cohomology group 189, 196
cohomology operation 489
cohomology ring 209
cohomology theory 200, 313, 448, 455
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>cohomology with compact supports</td>
<td>240</td>
</tr>
<tr>
<td>cohomotopy groups</td>
<td>455</td>
</tr>
<tr>
<td>colimit</td>
<td>460, 463</td>
</tr>
<tr>
<td>collar</td>
<td>250</td>
</tr>
<tr>
<td>commutative diagram</td>
<td>111</td>
</tr>
<tr>
<td>commutative graded ring</td>
<td>212</td>
</tr>
<tr>
<td>commutativity of cup product</td>
<td>212</td>
</tr>
<tr>
<td>compact supports</td>
<td>240, 334</td>
</tr>
<tr>
<td>compact-open topology</td>
<td>531</td>
</tr>
<tr>
<td>compactly generated topology</td>
<td>525, 533</td>
</tr>
<tr>
<td>complex of spaces</td>
<td>458, 463, 467</td>
</tr>
<tr>
<td>cone</td>
<td>9</td>
</tr>
<tr>
<td>connected graded algebra</td>
<td>282</td>
</tr>
<tr>
<td>connected sum</td>
<td>255</td>
</tr>
<tr>
<td>contractible</td>
<td>4, 157</td>
</tr>
<tr>
<td>contravariant</td>
<td>163, 199</td>
</tr>
<tr>
<td>coproduct</td>
<td>282, 462</td>
</tr>
<tr>
<td>covariant</td>
<td>163</td>
</tr>
<tr>
<td>covering homotopy property</td>
<td>59</td>
</tr>
<tr>
<td>covering space</td>
<td>55, 320, 342, 376</td>
</tr>
<tr>
<td>covering space action</td>
<td>71</td>
</tr>
<tr>
<td>covering transformation</td>
<td>69</td>
</tr>
<tr>
<td>cross product</td>
<td>215, 221, 266, 276, 277</td>
</tr>
<tr>
<td>cup product</td>
<td>247</td>
</tr>
<tr>
<td>CW approximation</td>
<td>351</td>
</tr>
<tr>
<td>CW complex</td>
<td>6, 521</td>
</tr>
<tr>
<td>CW pair</td>
<td>8</td>
</tr>
<tr>
<td>cycle</td>
<td>106</td>
</tr>
<tr>
<td>deck transformation</td>
<td>69</td>
</tr>
<tr>
<td>decomposable operation</td>
<td>499</td>
</tr>
<tr>
<td>deformation retraction</td>
<td>2, 35, 346, 525</td>
</tr>
<tr>
<td>deformation retraction, weak</td>
<td>18</td>
</tr>
<tr>
<td>degree</td>
<td>134, 255</td>
</tr>
<tr>
<td>Delta-complex</td>
<td>103</td>
</tr>
<tr>
<td>diagonal</td>
<td>282</td>
</tr>
<tr>
<td>diagram of spaces</td>
<td>456, 463</td>
</tr>
<tr>
<td>dihedral group</td>
<td>74</td>
</tr>
<tr>
<td>direct limit</td>
<td>241, 309, 456, 457, 463</td>
</tr>
<tr>
<td>directed set</td>
<td>241</td>
</tr>
<tr>
<td>divided polynomial algebra</td>
<td>222, 284, 289</td>
</tr>
<tr>
<td>division algebra</td>
<td>171, 219, 427</td>
</tr>
<tr>
<td>dodecahedral group</td>
<td>142</td>
</tr>
<tr>
<td>Dold-Thom theorem</td>
<td>484</td>
</tr>
<tr>
<td>dominated</td>
<td>530</td>
</tr>
<tr>
<td>dual Hopf algebra</td>
<td>288</td>
</tr>
<tr>
<td>Eckmann-Hilton duality</td>
<td>461</td>
</tr>
<tr>
<td>edge</td>
<td>81</td>
</tr>
<tr>
<td>edgpath</td>
<td>84</td>
</tr>
<tr>
<td>EHP sequence</td>
<td>475</td>
</tr>
<tr>
<td>Eilenberg</td>
<td>131</td>
</tr>
<tr>
<td>Eilenberg-MacLane space</td>
<td>86, 364, 393, 409, 454, 477</td>
</tr>
<tr>
<td>ENR, Euclidean neighborhood retract</td>
<td>529</td>
</tr>
<tr>
<td>Euler characteristic</td>
<td>6, 85, 146</td>
</tr>
<tr>
<td>Euler class</td>
<td>438, 444</td>
</tr>
<tr>
<td>exact sequence</td>
<td>114</td>
</tr>
<tr>
<td>excess</td>
<td>502</td>
</tr>
<tr>
<td>excision</td>
<td>119, 199, 359</td>
</tr>
<tr>
<td>exciseive triad</td>
<td>477</td>
</tr>
<tr>
<td>Ext</td>
<td>193, 314, 316</td>
</tr>
<tr>
<td>extension problem</td>
<td>415</td>
</tr>
<tr>
<td>exterior algebra</td>
<td>217, 282</td>
</tr>
<tr>
<td>external cup product</td>
<td>215</td>
</tr>
<tr>
<td>face</td>
<td>103</td>
</tr>
<tr>
<td>fiber</td>
<td>374</td>
</tr>
<tr>
<td>fiber bundle</td>
<td>376, 432</td>
</tr>
<tr>
<td>fiber homotopy equivalence</td>
<td>407</td>
</tr>
<tr>
<td>fiber-preserving map</td>
<td>407</td>
</tr>
<tr>
<td>fibration</td>
<td>375</td>
</tr>
<tr>
<td>fibration sequence</td>
<td>408, 463</td>
</tr>
<tr>
<td>finitely generated homotopy</td>
<td>363, 392, 423</td>
</tr>
<tr>
<td>finitely generated homology</td>
<td>423, 529</td>
</tr>
<tr>
<td>five-lemma</td>
<td>129</td>
</tr>
<tr>
<td>fixed point</td>
<td>31, 71, 115, 177, 226, 495</td>
</tr>
<tr>
<td>flag</td>
<td>436, 447</td>
</tr>
<tr>
<td>frame</td>
<td>299, 391</td>
</tr>
<tr>
<td>free action</td>
<td>72</td>
</tr>
<tr>
<td>free algebra</td>
<td>224</td>
</tr>
<tr>
<td>Term</td>
<td>Page(s)</td>
</tr>
<tr>
<td>---</td>
<td>--------------------------</td>
</tr>
<tr>
<td>free group</td>
<td>40, 76, 84</td>
</tr>
<tr>
<td>free product</td>
<td>40</td>
</tr>
<tr>
<td>free product with amalgamation</td>
<td>91</td>
</tr>
<tr>
<td>free resolution</td>
<td>191, 261</td>
</tr>
<tr>
<td>Freudenthal suspension theorem</td>
<td>359</td>
</tr>
<tr>
<td>function space</td>
<td>531</td>
</tr>
<tr>
<td>functor</td>
<td>163</td>
</tr>
<tr>
<td>fundamental class</td>
<td>233, 393</td>
</tr>
<tr>
<td>fundamental group</td>
<td>26</td>
</tr>
<tr>
<td>fundamental theorem of algebra</td>
<td>31</td>
</tr>
<tr>
<td>Galois correspondence</td>
<td>62</td>
</tr>
<tr>
<td>general linear group GL_n</td>
<td>291</td>
</tr>
<tr>
<td>good pair</td>
<td>114</td>
</tr>
<tr>
<td>Gram-Schmidt orthogonalization</td>
<td>291, 382</td>
</tr>
<tr>
<td>graph</td>
<td>6, 11, 81</td>
</tr>
<tr>
<td>graph of groups</td>
<td>90</td>
</tr>
<tr>
<td>graph product of groups</td>
<td>90</td>
</tr>
<tr>
<td>Grassmann manifold</td>
<td>224, 381, 435, 439, 445</td>
</tr>
<tr>
<td>groups acting on spheres</td>
<td>73, 135, 391</td>
</tr>
<tr>
<td>Gysin sequence</td>
<td>438, 444</td>
</tr>
<tr>
<td>H-space</td>
<td>279, 419, 420, 422, 427</td>
</tr>
<tr>
<td>HNN extension</td>
<td>91</td>
</tr>
<tr>
<td>hocolim</td>
<td>460, 463</td>
</tr>
<tr>
<td>holim</td>
<td>463</td>
</tr>
<tr>
<td>homologous cycles</td>
<td>106</td>
</tr>
<tr>
<td>homology</td>
<td>106</td>
</tr>
<tr>
<td>homology decomposition</td>
<td>466</td>
</tr>
<tr>
<td>homology of groups</td>
<td>148, 423</td>
</tr>
<tr>
<td>homology theory</td>
<td>160, 313, 455</td>
</tr>
<tr>
<td>homotopy</td>
<td>3, 25</td>
</tr>
<tr>
<td>homotopy equivalence</td>
<td>3, 11, 36, 346</td>
</tr>
<tr>
<td>homotopy extension property</td>
<td>14</td>
</tr>
<tr>
<td>homotopy fiber</td>
<td>406, 462, 480</td>
</tr>
<tr>
<td>homotopy group</td>
<td>340</td>
</tr>
<tr>
<td>homotopy group with coefficients</td>
<td>463</td>
</tr>
<tr>
<td>homotopy lifting property</td>
<td>59, 375, 379</td>
</tr>
<tr>
<td>homotopy of attaching maps</td>
<td>13, 16</td>
</tr>
<tr>
<td>homotopy type</td>
<td>3</td>
</tr>
<tr>
<td>Hopf</td>
<td>134, 171, 219, 279, 283</td>
</tr>
<tr>
<td>Hopf algebra</td>
<td>282</td>
</tr>
<tr>
<td>Hopf bundle</td>
<td>360, 374, 377, 378, 391</td>
</tr>
<tr>
<td>Hopf invariant</td>
<td>427, 447, 491, 492</td>
</tr>
<tr>
<td>Hopf map</td>
<td>378, 379, 384, 427, 430, 475, 476, 500</td>
</tr>
<tr>
<td>Hurewicz homomorphism</td>
<td>368, 488</td>
</tr>
<tr>
<td>Hurewicz theorem</td>
<td>370, 371, 390</td>
</tr>
<tr>
<td>induced fibration</td>
<td>408</td>
</tr>
<tr>
<td>induced homomorphism</td>
<td>34, 110, 111, 118, 199, 214</td>
</tr>
<tr>
<td>infinite loopspace</td>
<td>396</td>
</tr>
<tr>
<td>invariance of dimension</td>
<td>126</td>
</tr>
<tr>
<td>invariance of domain</td>
<td>170</td>
</tr>
<tr>
<td>inverse limit</td>
<td>310, 409, 463</td>
</tr>
<tr>
<td>inverse path</td>
<td>27</td>
</tr>
<tr>
<td>isomorphism of actions</td>
<td>69</td>
</tr>
<tr>
<td>isomorphism of covering spaces</td>
<td>66</td>
</tr>
<tr>
<td>iterated mapping cylinder</td>
<td>458, 467</td>
</tr>
<tr>
<td>J(X), James reduced product</td>
<td>221, 281, 286, 288, 469, 471</td>
</tr>
<tr>
<td>J-homomorphism</td>
<td>386</td>
</tr>
<tr>
<td>join</td>
<td>9, 457</td>
</tr>
<tr>
<td>Jordan curve theorem</td>
<td>168</td>
</tr>
<tr>
<td>K(G, 1) space</td>
<td>86</td>
</tr>
<tr>
<td>Klein bottle</td>
<td>51, 73, 91, 102</td>
</tr>
<tr>
<td>k-invariant</td>
<td>411, 477</td>
</tr>
<tr>
<td>Künneth formula</td>
<td>216, 266, 272, 274, 356, 432</td>
</tr>
<tr>
<td>Lefschetz</td>
<td>131, 177, 226</td>
</tr>
<tr>
<td>Lefschetz duality</td>
<td>251</td>
</tr>
<tr>
<td>Lefschetz number</td>
<td>177</td>
</tr>
<tr>
<td>lens space</td>
<td>73, 87, 144, 248, 281, 302, 308, 391</td>
</tr>
<tr>
<td>Lefschetz number</td>
<td>177</td>
</tr>
<tr>
<td>Leray-Hirsch theorem</td>
<td>432</td>
</tr>
<tr>
<td>Lie group</td>
<td>280</td>
</tr>
<tr>
<td>lift</td>
<td>29, 59</td>
</tr>
</tbody>
</table>
lifting criterion 60
lifting problem 415
limit 460, 463
lim-one 311, 410
linking 45
local coefficients: cohomology 328, 333
local coefficients: homology 326
local degree 136
local homology 126, 253
local orientation 231
local trivialization 376
locally contractible 525, 527
locally finite homology 336
locally path-connected 61
long exact sequence: cohomology 198
long exact sequence: fibration 375
long exact sequence: homology 114, 116, 117, 119
long exact sequence: homotopy 343
loop 26
loop space 394, 406, 471
manifold 226, 529, 531
manifold with boundary 250
mapping cone 13, 180
mapping cylinder 2, 180, 347, 457, 462
mapping telescope 138, 310, 458, 530
mapping torus 53, 151, 458
maximal tree 82
Mayer-Vietoris axiom 449
Mayer-Vietoris sequence 149, 159, 161, 201
Milnor 406, 407
minimal chain complex 303
Mittag-Leffler condition 315
monoid 163
Moore space 143, 275, 310, 319, 390, 463, 466, 477
Moore-Postnikov tower 413
natural transformation 165
naturalness 127
\(n\)-connected cover 414
\(n\)-connected space, pair 346
neve 254, 458
nonsingular pairing 247
normal covering space 69
nullhomotopic 4
object 162
obstruction 416
obstruction theory 415
octonion 171, 280, 292, 378, 500
\(\Omega\)-spectrum 396
open cover 459
orbit, orbit space 71, 457
orientable manifold 231
orientable sphere bundle 442
orientation 105, 231, 233
orientation class 234
orthogonal group \(O(n)\) 291, 306, 435
\(p\)-adic integers 312
path 25
path lifting property 59
pathspace 405
permutation 67
plus construction 374, 420
Poincaré 131
Poincaré conjecture 390
Poincaré duality 238, 243, 251, 335
Poincaré series 227, 437
Pontryagin product 286, 296
Postnikov tower 355, 409
primary obstruction 418
primitive element 282, 296
principal fibration 411, 420
prism 112
product of \(\Delta\)-complexes 277
product of CW complexes 8, 526
product of paths 26
product of simplices 276
product space 33, 266, 343, 533
projective plane 51, 102, 106, 209, 378
projective space: quaternion 211, 223, 227, 248, 321, 377, 379, 439, 493, 494
projective space: real 6, 73, 86, 144, 154, 177, 209, 227, 248, 321, 439, 493
properly discontinuous 71
pullback 408, 434, 462
Puppe sequence 398
pushout 462, 467
quasi-circle 78
quasifibration 480
quaternion 74, 171, 280, 292, 448
Quillen 374
quotient CW complex 9
rank 146
reduced cohomology 197
reduced homology 110
reduced suspension 12, 394
rel 3, 16
relative cohomology 197
relative cycle, boundary 115
relative homology 115
relative homotopy group 343
reparametrization 27
retraction 3, 35, 115, 148, 527
Schoenflies theorem 169
semilocally simply-connected 62
sheet 60
short exact sequence 114, 116
shrinking wedge 49
shuffle 276
simplex 10, 102
simplicial approximation theorem 175
simplicial cohomology 200
simplicial complex 107
simplicial homology 106, 128
simplicial map 175
simply-connected 28
simply-connected 4-manifold 430
singular complex 108
singular homology 108
singular simplex 108
skeleton 6, 521
slant product 279
smash product 10, 221, 269
spectrum 454
sphere bundle 442, 445
Spin(n) 290
split exact sequence 147
stable homotopy group 383, 453
stable splitting 493
stable stem 384
star 175
Steenrod algebra 499
Steenrod homology 255
Steenrod squares, powers 489
Stiefel manifold 299, 381, 436, 447, 496
subcomplex 8, 522
subgraph 82
surface 50, 86, 92, 102, 141, 205, 238, 390
suspension 9, 137, 221, 468, 474
suspension spectrum 454
symmetric polynomials 436
symmetric product 281, 365, 482
symplectic group Sp(n) 224, 381, 434
tensor algebra 287, 472
tensor product 215, 327
tensor product of chain complexes 272
Thom class 441, 512
Thom isomorphism 442
Thom space 442, 512
Toda bracket 387
topological group 280
torsion coefficient 130
Tor 261, 265
torus 33, 73, 102, 106, 225
torus knot 46
total space 376
transfer homomorphism 172, 320
transitive action 69
tree 82
triple 119, 344
truncated polynomial algebra 283
unique lifting property 61
unitary group $U(n)$ 224, 381, 434
universal coefficient theorem 193, 262, 464
universal cover 58, 67
van Kampen 41
vector field 135, 496
vertex 81, 102
weak homotopy equivalence 351
weak topology 6, 81, 523
wedge sum 10, 42, 126, 160, 200, 379, 468
Whitehead product 380, 430
Whitehead tower 354
Whitehead’s theorem 346, 367, 417