The papers in this volume were part of the technical conference cited on the cover and title page. Papers were selected and subject to review by the editors and conference program committee. Some conference presentations may not be available for publication. Additional papers and presentation recordings may be available online in the SPIE Digital Library at SPIEDigitalLibrary.org.

The papers reflect the work and thoughts of the authors and are published herein as submitted. The publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Please use the following format to cite material from these proceedings:

ISSN: 0277-786X
ISSN: 1996-756X (electronic)

ISBN: 9781510620612

Published by
SPIE
P.O. Box 10, Bellingham, Washington 98227-0010 USA
Telephone +1 360 676 3290 (Pacific Time); Fax +1 360 647 1445
SPIE.org
Copyright © 2018, Society of Photo-Optical Instrumentation Engineers.

Copying of material in this book for internal or personal use, or for the internal or personal use of specific clients, beyond the fair use provisions granted by the U.S. Copyright Law is authorized by SPIE subject to payment of copying fees. The Transactional Reporting Service base fee for this volume is $18.00 per article (or portion thereof), which should be paid directly to the Copyright Clearance Center (CCC), 222 Rosewood Drive, Danvers, MA 01923. Payment may also be made electronically through CCC Online at copyright.com. Other copying for republication, resale, advertising or promotion, or any form of systematic or multiple reproduction of any material in this book is prohibited except with permission in writing from the publisher. The CCC fee code is 0277-786X/18/$18.00.

Printed in the United States of America by Curran Associates, Inc., under license from SPIE.

Publication of record for individual papers is online in the SPIE Digital Library.

SPIE. DIGITAL LIBRARY
SPIEDigitalLibrary.org

Paper Numbering: Proceedings of SPIE follow an e-First publication model. A unique citation identifier (CID) number is assigned to each article at the time of publication. Utilization of CIDs allows articles to be fully citable as soon as they are published online, and connect the same identifier to all online and print versions of the publication. SPIE uses a seven-digit CID article numbering system structured as follows:
- The first five digits correspond to the SPIE volume number.
- The last two digits indicate publication order within the volume using a Base 36 numbering system employing both numerals and letters. These two-number sets start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B ... 0Z, followed by 10-1Z, 20-2Z, etc. The CID Number appears on each page of the manuscript.
Contents

<table>
<thead>
<tr>
<th>SESSION 1</th>
<th>3D IMAGING</th>
</tr>
</thead>
<tbody>
<tr>
<td>10745 03</td>
<td>Field-of-view enhancement for commercially available active imaging camera using time-of-flight technology [10745-2]</td>
</tr>
<tr>
<td>10745 04</td>
<td>Design of coded structured light based on square-shaped primitives [10745-3]</td>
</tr>
<tr>
<td>10745 06</td>
<td>System matrix generation for 3D tomographic reconstructions using an optical design software [10745-5]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SESSION 2</th>
<th>ANALYSIS AND APPLICATIONS I</th>
</tr>
</thead>
<tbody>
<tr>
<td>10745 07</td>
<td>Simulation of multi-channel microlens array for image stitching [10745-6]</td>
</tr>
<tr>
<td>10745 09</td>
<td>Design and prototyping of a freeform light-guide for automotive lighting [10745-8]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SESSION 3</th>
<th>LENS DESIGN METHODOLOGY</th>
</tr>
</thead>
<tbody>
<tr>
<td>10745 0C</td>
<td>Correction of wavefront aberrations in focal and afocal TMAs [10745-11]</td>
</tr>
<tr>
<td>10745 0D</td>
<td>Athermal glass for infrared optics [10745-12]</td>
</tr>
<tr>
<td>10745 0E</td>
<td>Caustic surfaces produced by a plane wavefront refracted through cemented doublet lenses [10745-13]</td>
</tr>
<tr>
<td>10745 0G</td>
<td>Holographic progressive lenses [10745-45]</td>
</tr>
</tbody>
</table>
SESSION 4 ANALYSIS AND APPLICATIONS II

10745 OI Toward semantic loop closure in simultaneous localization and mapping systems [10745-16]

10745 OJ Optic design and manufacturing issues of a high numerical broadband IR solid immersion microscope objective [10745-17]

10745 OK Optical design and predicted performance of the WFIRST phase-b imaging optics assembly and wide field instrument [10745-18]

10745 OL Novel designs for minimizing diffraction effects of large segmented mirror telescopes [10745-19]

SESSION 5 SOLID STATE LIGHTING

10745 OM CCT stabilization and phosphor temperature detection in pc-WLEDs (Invited Paper) [10745-20]

SESSION 6 ANALYSIS AND APPLICATIONS III

10745 OR Tunable GRIN PDMS-made lenses with aspheric profile [10745-25]

10745 OT Optomechanical system to induce low-order refractive errors on a biconical surface [10745-27]

POSTER SESSION

10745 OV Comparison between the Arclight Ophthalmoscope and a standard handheld direct ophthalmoscope: a clinical study [10745-29]

10745 OX Optical design of CCF PlanApo microobjectives 50-mm observation and super long working distance [10745-31]

10745 OY Optical designs of the objectives for special studies in polarizing microscope [10745-32]

10745 OZ Design of ergonomic handpieces for a CO₂ laser system for surgical and cosmetological applications [10745-33]

10745 10 The design of the prism film on the optical concentrator for photovoltaic applications [10745-34]

10745 11 Optical coatings for the optical concentrator with the prism film [10745-35]

10745 12 Abbe experiment with inclined grating [10745-37]
Reducing the reabsorption effect in an optical concentrator by using a luminescent layer with multiple phosphors [10745-38]

Design and analysis of the mirror system with off-axis field-of-view [10745-39]

Optimizing trefoil phase plates design for color wavefront coding [10745-40]

Implementation of a wavefront coded microscope by the use of a spatial light modulator [10745-41]

Design of an adaptive Fresnel lens using design thinking methodology and cost analysis [10745-42]

Design of lens hoods for the "Lira-B" space telescope [10745-43]