Mapping the Universe: the interactive history of astronomy

by Paul Murdin


Both the title and the subtitle of this book have the potential to confuse its readership. Paul Murdin’s narrative does not really address the mapping of the night sky in any literal sense, and the experience of reading that narrative – although undoubtedly pleasurable – is not interactive in any way that would be readily understood by the contemporary reader. Instead we are presented with a straightforward and engaging popular history of how humankind’s perceptions of the universe have been progressively modified both by the development of ever more complex technologies and by the dramatic shifts that such technologies have forced upon our understanding of the universe we inhabit.

The tale that Murdin tells is, of course, the grandest and most inspiring of narratives, and his treatment of it is both secure and deft, as one might expect from an astronomer and writer of his stature and experience. It is also firmly centred on the personalities that have contributed so much to the history of astronomy. Even as the technologies become ever more sophisticated and compelling – from Galileo’s application to the sky of his rudimentary optical tube to the remarkable triumphs of the Hubble space telescope and interplanetary probes – Murdin never loses sight of the human achievement.

Inevitably, any outline account of the rich history of astronomy must be selective and partial, and the present book is no exception. Yet Murdin has been remarkably judicious in his selection of what to include and what to pass over, and the book never loses impetus or focus. Neither does it sell short the grandeur of the tale it has to tell.

The ‘interactive’ element of this book consists of a selection of facsimile documents from the history of astronomy, contained in document envelopes throughout the text. These range from a watercolour of the great comet of 1532 and Galileo’s telescopic observations of Jupiter and the Moon in 1610 through to the remarkable imagery produced by the HST, the Mars Reconnaissance Orbiter and the Cassini probe. They are beautifully reproduced, but the reader expecting a truly interactive experience will be disappointed.

In summary, this volume is a coffee-table book designed for the general reader. However, unlike many such books, it is accurate, authoritative and well written. The newcomer to the history of astronomy will gain much from it.

Bill Leatherbarrow

Professor Bill Leatherbarrow is President of the BAA and Director of the Lunar Section.

This review is copyright © the Journal of the British Astronomical Association, www.britastro.org/journal. If you wish to reproduce it, or place it on your own Web page, please contact the Editor: Mrs Hazel McGee, hazelmgee "at" btinternet.com
The "interactive™ element of this book consists of a selection of facsimile documents from the history of astronomy, contained in document envelopes throughout the text. These range from a watercolour of the great comet of 1532 and Galileo’s telescopic observations of Jupiter and the Moon in 1610 through to the remarkable imagery produced by the HST, the Mars Reconnaissance Orbiter and the Cassini probe. They are beautifully reproduced, but the reader expecting a truly interactive experience will be disappointed. In summary, this volume is a coffee-table book designed for the general reader Astronomy is the oldest of the natural sciences, dating back to antiquity, with its origins in the religious, mythological, cosmological, calendrical, and astrological beliefs and practices of prehistory: vestiges of these are still found in astrology, a discipline long interwoven with public and governmental astronomy. It was not completely separated in Europe (see astrology and astronomy) during the Copernican Revolution starting in 1543. In some cultures, astronomical data was used for astrological Astronomy is one of humanity’s oldest and most fascinating sciences, beginning with the practices of the early astronomers and their assumptions. It explained the prograde and retrograde motions of the planets. It took Earth out of its spot as the center of the universe. And, it expanded the size of the universe. In a geocentric model, the size of the universe is limited so that it can revolve once every 24 hours, or else the stars would get slung off due to centrifugal force. So, maybe the Church did fear more than a demotion of our place in the universe since a deeper understanding of the universe was changing with Copernicus’s ideas. While it was a major step in the right direction, Copernicus™ theories were still quite cumbersome.
Jan 31, 2020 - Over eight centuries of humanity’s evolving views of the universe, from ancient Buddhist cosmological maps to Galileo’s seminal work in astronomy to Persian celestial globes and more. A synopsis of the universe or the visible world. Set of 3 prints in varies sizes. Vintage restoration hardware home Deco Style old wall reproduction map print. Our current understanding of the history of the universe is visualized above, with time running from left to right. We think that immediately after its creation at the time of the Big Bang, the universe expanded dramatically—an event called inflation. Our Earth formed when the universe was around 9.2 billion years old. The expansion of the universe continues today and is accelerating. A Galaxy Held Together by Dark Matter. Milky Way Galaxy map: Robert Hurt; Fritz Zwicky photo via University of Virginia Dept. of Astronomy. The layout of our galaxy is difficult to figure out from our vantage point, which is embedded in it. By studying the shapes of distant galaxies and carefully measuring the objects that we see in our own galaxy, we have inferred that ours is a barred-spiral galaxy.