Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy IX

Jonas Zmuidzinas
Jian-Rong Gao
Editors

12–15 June 2018
Austin, Texas, United States

Sponsored by
SPIE

Cosponsored by
4D Technology (United States) • Andor Technology, Ltd. (United Kingdom) • Astronomical Consultants & Equipment, Inc. (United States) • Giant Magellan Telescope (Chile) • GPixel, Inc. (China) • Harris Corporation (United States) • Materion Corporation (United States) • Optimax Systems, Inc. (United States) • Princeton Infrared Technologies (United States) • Symétrie (France) • Teledyne Technologies, Inc. (United States) • Thirty Meter Telescope (United States)

Cooperating Organizations
European Space Organisation • National Radio Astronomy Observatory (United States) • Science & Technology Facilities Council (United Kingdom) • Canadian Astronomical Society (Canada) • Canadian Space Association ASC (Canada) • Royal Astronomical Society (United Kingdom) • Association of Universities for Research in Astronomy (United States) • American Astronomical Society (United States) • Australian Astronomical Observatory (Australia) • European Astronomical Society (Switzerland)

Published by
SPIE

Volume 10708
Part One of Two Parts

SPIE is an international society advancing an interdisciplinary approach to the science and application of light.
The papers in this volume were part of the technical conference cited on the cover and title page. Papers were selected and subject to review by the editors and conference program committee. Some conference presentations may not be available for publication. Additional papers and presentation recordings may be available online in the SPIE Digital Library at SPIEDigitalLibrary.org.

The papers reflect the work and thoughts of the authors and are published herein as submitted. The publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Please use the following format to cite material from these proceedings:

ISSN: 0277-786X
ISSN: 1996-756X (electronic)
ISBN: 9781510619692

Published by
SPIE
P.O. Box 10, Bellingham, Washington 98227-0010 USA
Telephone +1 360 676 3290 (Pacific Time); Fax +1 360 647 1445
SPIE.org
Copyright © 2018, Society of Photo-Optical Instrumentation Engineers.

Copying of material in this book for internal or personal use, or for the internal or personal use of specific clients, beyond the fair use provisions granted by the U.S. Copyright Law is authorized by SPIE subject to payment of copying fees. The Transactional Reporting Service base fee for this volume is $18.00 per article (or portion thereof), which should be paid directly to the Copyright Clearance Center (CCC), 222 Rosewood Drive, Danvers, MA 01923. Payment may also be made electronically through CCC Online at copyright.com. Other copying for republication, resale, advertising or promotion, or any form of systematic or multiple reproduction of any material in this book is prohibited except with permission in writing from the publisher. The CCC fee code is 0277-786X/18/$18.00.

Printed in the United States of America by Curran Associates, Inc., under license from SPIE.

Publication of record for individual papers is online in the SPIE Digital Library.

SPIEDigitalLibrary.org

Paper Numbering: Proceedings of SPIE follow an e-First publication model. A unique citation identifier (CID) number is assigned to each article at the time of publication. Utilization of CIDs allows articles to be fully citable as soon as they are published online, and connects the same identifier to all online and print versions of the publication. SPIE uses a seven-digit CID article numbering system structured as follows:

- The first five digits correspond to the SPIE volume number.
- The last two digits indicate publication order within the volume using a Base 36 numbering system employing both numerals and letters. These two-number sets start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B ... 0Z, followed by 10-1Z, 20-2Z, etc. The CID Number appears on each page of the manuscript.
Contents

ix Authors
xvii Conference Committee

Part One

CMB INSTRUMENTS I

10708 05 BFORE: a CMB balloon payload to measure reionization, neutrino mass, and cosmic inflation [10708-4]
10708 06 The primordial inflation polarization explorer (PIPER): current status and performance of the first flight [10708-5]
10708 07 BICEP Array: a multi-frequency degree-scale CMB polarimeter [10708-49]

OPTICS I

10708 0D Development of large-diameter flat mesh-lenses for millimetre wave instrumentation [10708-11]
10708 0E Design and development of a polarization modulator unit based on a continuous rotating half-wave plate for LiteBIRD [10708-12]
10708 0F Aerogel scattering filters for cosmic microwave background observations [10708-13]
10708 0G Metamaterial-based Toraldo pupils for super-resolution at millimetre wavelengths [10708-14]

SUBMM/FIR CAMERAS

10708 0J Optical design of the TolTEC millimeter-wave camera [10708-17]
10708 0K The SAFARI detector system [10708-18]
10708 0L Preflight characterization of the BLAST-TNG receiver and detector arrays [10708-19]
10708 0M MUSCAT: the Mexico-UK Sub-Millimetre Camera for AsTronomy [10708-20]
COHERENT DETECTION I

10708 0Y Evaluation of controllers for tuning digitizers in the ALMA interferometer [10708-32]
10708 0Z 4×2 HEB receiver at 4.7 THz for GUSTO [10708-33]
10708 12 Technical achievements of the ALMA future receiver development program at the National Astronomical Observatory of Japan [10708-36]

COHERENT DETECTION II

10708 13 A proposal of a photonic local system for the extended Atacama large millimeter/submillimeter array and advanced radio interferometers [10708-37]
10708 14 Planar superconductor-insulator-superconductor mixer array receivers for wide field of view astronomical observation [10708-38]
10708 15 GLT receiver commissioning at JCMT and future JCMT instrumentation [10708-39]
10708 16 Electronics instrumentation for the Greenland telescope [10708-40]

MULTIPLEXED READOUT

10708 1D Digital frequency multiplexing with sub-Kelvin SQUIDs [10708-47]

CMB INSTRUMENTS II

10708 1G The STRIP instrument of the Large Scale Polarization Explorer: microwave eyes to map the Galactic polarized foregrounds [10708-50]

SUBMM/FIR SPECTROMETERS II

10708 1O The design and characterization of a 300 channel, optimized full-band millimeter filterbank for science with SuperSpec [10708-58]

NEW DEVELOPMENTS

10708 1U Prime-Cam: a first-light instrument for the CCAT-prime telescope [10708-64]
Development of a robust, efficient process to produce scalable, superconducting kilopixel far-IR detector arrays [10708-65]

Ultra-low-noise transition edge sensors for far infrared wavelengths: optical design, measurement and stray light control [10708-66]

Eliminating stray radiation inside large area imaging arrays [10708-67]

POSTER SESSION: CMB DETECTORS I

Design and characterization of the Cosmology Large Angular Scale Surveyor (CLASS) 93 GHz focal plane [10708-68]

POSTER SESSION: CMB INSTRUMENTS I

Cooldown strategies and transient thermal simulations for the Simons Observatory [10708-77]

The Cosmology Large Angular Scale Surveyor receiver design [10708-78]

Simons Observatory large aperture telescope receiver design overview [10708-79]

Design and characterization of a ground-based absolute polarization calibrator for use with polarization sensitive CMB experiments [10708-80]

QUBIC: the Q and U bolometric interferometer for cosmology [10708-81]

BICEP array cryostat and mount design [10708-83]

High-precision scanning water vapor radiometers for cosmic microwave background site characterization and comparison [10708-84]

Preliminary scanning strategy analysis for the LSPE-STRIP instrument [10708-85]

POSTER SESSION: OPTICS I

Design and performance of wide-band corrugated walls for the BICEP Array detector modules at 30/40 GHz [10708-86]

Next generation sub-millimetre wave focal plane array coupling concepts: an ESA TRP project to develop multichroic focal plane pixels for future CMB polarisation experiments [10708-87]

Simulations and performance of the QUBIC optical beam combiner [10708-88]
Ultra-thin large-aperture vacuum windows for millimeter wavelengths receivers [10708-90]

Part Two

Variable-delay polarization modulators for the CLASS telescopes [10708-92]

2017 upgrade and performance of BICEP3: a 95GHz refracting telescope for degree-scale CMB polarization [10708-93]

SIAI alloy feedhorn arrays: material properties, feedhorn design, and astrophysical applications [10708-146]

POSTER SESSION: COHERENT DETECTION

Analysis techniques for complex field radiation pattern measurements [10708-96]

A VLBI receiving system for the South Pole Telescope [10708-97]

Low-power CMOS digital electronics for radio, mm-wave and sub-mm astrophysics [10708-99]

The new heterodyne receiver system for the ASTE radio telescope: three-cartridge cryostat with two cartridge-type superconducting receivers [10708-100]

Development of a low-power cryogenic MMIC HEMT amplifier for heterodyne array receiver application [10708-102]

Q-band single pixel receiver development for the ngVLA and NRC [10708-36]

Performance of pre-production band 1 receiver for the Atacama Large Millimeter/submillimeter Array (ALMA) [10708-46]

A digital beamformer for the advanced focal array demonstrator (AFAD) [10708-58]

The first-light receivers for the Greenland Telescope [10708-149]

Progress in the construction and testing of the Tianlai radio interferometers [10708-150]

Overview of the East Asia ALMA development program [10708-152]

POSTER SESSION: FIR CAMERAS

Latest results and prospects of the ArTeMiS camera on APEX [10708-107]
Upgrading SCUBA-2 with a newly designed thermal filter stack [10708-108]

POSTER SESSION: FIR DETECTORS

Revisiting the optimization of the SCUBA-2 TES arrays for POL-2 and FTS-2 operations [10708-111]

POSTER SESSION: FIR SPECTROSCOPY

TIME millimeter wave grating spectrometer [10708-114]

The optical design of a far infrared spectrometer for SPICA: grating modules evaluation [10708-115]

POSTER SESSION: OPTICS II

Use of evolutionary computing algorithms in the design of millimetre-wave metamaterial devices [10708-116]

Fabrication and characterization of a NIR-FIR dichroic for the infrared interferometer BETTII [10708-117]

Characterizing and reducing the POL-2 instrumental polarization [10708-121]

POSTER SESSION: CMB DETECTORS II

Fabrication and characterization of cooled silicon bolometers for mm wave detection [10708-123]

POSTER SESSION: CMB INSTRUMENTS II

Systematic error cancellation for the PIXIE four-port interferometric polarimeter [10708-129]

Thermal architecture for the QUBIC cryogenic receiver [10708-130]

Design and characterization of the POLARBEAR-2b and POLARBEAR-2c cosmic microwave background cryogenic receivers [10708-131]

Simons Observatory large aperture receiver simulation overview [10708-132]
Studies of systematic uncertainties for Simons Observatory: detector array effects [10708-134]

Development of calibration strategies for the Simons Observatory [10708-135]

Designs for next generation CMB survey strategies from Chile [10708-136]

BoloCalc: a sensitivity calculator for the design of Simons Observatory [10708-137]

Broadband anti-reflective coatings for cosmic microwave background experiments [10708-138]

POSTER SESSION: MULTIPLEXING

The FDM readout for the LSPE/SWIPE TES bolometers [10708-139]

Performance of NbSi transition-edge sensors readout with a 128 MUX factor for the QUBIC experiment [10708-140]

Investigation of magnetic shielding for superconducting readout [10708-141]

POSTER SESSION: OPTICS III

Prototype design and evaluation of the nine-layer achromatic half-wave plate for the LiteBIRD low frequency telescope [10708-142]

Cross-polarization systematics due to Mizuguchi-Dragone condition breaking by a continuously rotating half-wave plate at prime focus in the Huan Tran telescope [10708-144]

Multi-octave anti-reflection coating for polypropylene-based quasi-optical devices [10708-145]

Feedhorn development and scalability for Simons Observatory and beyond [10708-147]
Future discoveries in the far-IR and millimeter will undoubt-edly leverage future space missions and the new technologies that enable them. The planar, metamaterial optical coupling technologies being developed and reported here may directly enable the large, compact, and robust detector arrays required for future astrophysical experiments. N. Zhu, Feedhorn development and scalability for Simons observatory and beyond, in Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy IX, vol. 10708 (2018), p. 107084B. Poster Previews for Conference 9914 Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VIII Â© (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only. Read more. Article. Instrumentation for extreme ultraviolet astronomy. January 1978. F. Paresce. Design considerations for instruments intended for EUV astronomy from space are discussed. The ability of an optical system to detect and measure the brightness of an object is examined, options available for mirror design in the EUV are summarized, and two telescope configurations selected for flight are noted.